c77_rbac PostgreSQL Extension

Technical Assessment Report

Document Version: 1.0
Assessment Date: January 2025

Reviewer: Independent Technical Assessment

Executive Summary

The c77_rbac PostgreSQL extension is a production-ready, enterprise-grade solution for implementing
Role-Based Access Control (RBAC) with Row-Level Security (RLS) at the database level. This assessment
finds it to be an exceptionally well-designed and documented project that addresses critical authorization

needs in modern applications.

Overall Rating: 4.5/5

Key Findings

¢ Exceptional documentation with comprehensive tutorials and usage guides

Production-ready with proper error handling, performance optimization, and upgrade paths

Enterprise-scale capable with bulk operations and monitoring tools

Framework-agnostic design with examples for major web frameworks

Security-first approach with database-level enforcement

1. Project Overview

Purpose

c77_rbac provides database-level authorization that ensures consistent security across all application
layers and direct database access. It pushes authorization logic to PostgreSQL, eliminating security gaps

that can occur with application-level implementations.

Core Features

¢ Database-centric authorization with Row-Level Security

Flexible scope-based permissions (global, department, project, tenant, etc.)

Bulk operations for large-scale user management

Comprehensive monitoring and reporting capabilities

Clean upgrade path and maintenance utilities

Version History
¢ Version 1.0: Initial release with core RBAC functionality

e Version 1.1: Enhanced with bulk operations, removal functions, better error handling, and monitoring

views

2. Technical Architecture Assessment

2.1 Database Design (% % % % %)

Strengths:

¢ Clean, normalized schema with proper foreign key constraints
e Efficient indexing strategy including hash indexes for performance
e Separation of concerns (subjects, roles, features, assignments)

e Timestamp tracking for audit purposes

Schema Quality:

sql

- €77 rbac subjects (users)

- €77 rbac_roles (named permission sets)

- €77 rbac features (individual permissions)

- €77 rbac subject roles (user-role assignments with scope)
- €77 rbac role features (role-permission mappings)

2.2 Code Quality (% % % % v¢)

Strengths:

e Consistent PL/pgSQL coding style
e Comprehensive input validation with helpful error messages
¢ Proper use of SECURITY DEFINER for privilege escalation

¢ Transaction-safe operations with appropriate error handling

Example of Quality Error Handling:

sql

IF p external id IS NULL OR trim(p_external id) = '' THEN
RAISE EXCEPTION ‘'external id cannot be NULL or empty'’
USING HINT = 'Provide a valid user identifier',
ERRCODE = 'invalid parameter value';
END IF;

2.3 Performance Optimization (% % % %)

Implemented Optimizations:

Hash indexes on frequently queried columns

Composite indexes for common access patterns

Optimized permission check function ([c77_rbac_can_access_optimized])

Bulk operations for large-scale assignments

e STABLE function marking for query optimization
Performance Considerations:

¢ Scales well for typical enterprise applications (thousands of users)
¢ May require additional optimization for millions of users

¢ Consider materialized views for very large permission matrices

2.4 Security Implementation (% % % %)

Security Features:

All modifications through controlled functions (no direct table access)

Input sanitization and validation

RLS integration ensures consistent enforcement

Proper privilege separation

Audit trail capabilities with timestamps
Security Patterns:

e SECURITY DEFINER used appropriately

¢ Public read access to tables, write only through functions

e Session-based user context (c77_rbac.external id))

3. Documentation Quality (% % % % %)

Exceptional Documentation Includes:

1. Comprehensive Installation Guide

e Step-by-step instructions for multiple OS platforms
e Troubleshooting section with common issues

¢ Upgrade procedures from v1.0 to v1.1
2. Six-Part Tutorial Series

¢ Builds complete "TechCorp" example application
e Covers all aspects from installation to advanced features

¢ |ncludes realistic business scenarios
3. Five-Part Usage Guide

e Core concepts and patterns

Framework integration (Laravel, Django, Rails, Node.js)

Real-world examples

Performance optimization

Security best practices
4. Complete API Reference

e All functions documented with parameters and returns
¢ Views and tables explained

¢ Best practices for each feature

Documentation Highlights:
¢ Tutorial depth: Rarely seen in open-source projects
¢ Real-world focus: Examples reflect actual business needs

e Framework coverage: Not limited to one technology stack

4. Feature Analysis

4.1 Core RBAC Features (% % % % %)

o [4 Role assignment with flexible scoping

o [74 Feature (permission) management

e [74 Global admin support with override capabilities
e [74 Row-Level Security integration

o [74 Multi-tenant support

4.2 Version 1.1 Enhancements (% % % % %)

o [74 Bulk operations: Essential for enterprise scale

e [74 Removal functions: Complete CRUD operations
e [74 Admin sync: Automatic permission propagation
o [74 Monitoring views: System health visibility

e [74 Enhanced error handling: Developer-friendly messages

4.3 Management Utilities (% % % % v¢)

e [74 User role reporting

o [74 Permission analysis views
o [74 System summary statistics
e [74 Dependency checking

e [74 Clean uninstallation process

4.4 Integration Capabilities (¥ % % % %)

¢ Framework-agnostic design
e Examples for major web frameworks
¢ Session-based context management

e Compatible with connection pooling

5. Use Case Suitability

Excellent Fit For:

Multi-tenant SaaS applications: Strong isolation between tenants

Enterprise systems: Complex organizational hierarchies

Healthcare/Financial: Audit requirements and compliance

Educational platforms: Program/course-based access control

Government systems: Department and classification-based security

Advantages Over Application-Level Auth:
¢ Consistency: Same rules apply regardless of access method
¢ Performance: Database optimizes permission checks
¢ Security: Cannot be bypassed by application bugs

¢ Maintenance: Centralized permission management

Considerations:
e Requires PostgreSQL 14+
¢ Database-centric approach may not suit all architectures

¢ Learning curve for developers unfamiliar with RLS

6. Competitive Analysis

Compared to Application-Level Solutions:

Advantages:

Cannot be bypassed by application errors

Consistent across all data access paths

Better performance for data filtering

Framework-agnostic
Disadvantages:

e Less flexibility for complex business rules
¢ PostgreSQL-specific solution

¢ Requires database expertise
Compared to Other RBAC Solutions:

vs. Casbin/OPA:

e More tightly integrated with database
¢ Better performance for data filtering

e Less flexible for complex policies

vs. External Auth Services (AuthO, Okta):

¢ No external dependencies
¢ Better performance (no network calls)

¢ Data and auth in same system

7. Areas for Enhancement

7.1 Testing Infrastructure
¢ Need: Automated test suite
¢ Benefit: Confidence in upgrades and modifications

¢ Recommendation: Add pgTAP-based test suite

7.2 Advanced Features

Role inheritance: Hierarchical role structures

Time-based permissions: Built-in temporal access control

Attribute-based access: Support for ABAC patterns

Delegation: Allow users to grant subset of permissions

7.3 Operational Tooling
¢ Performance profiling: Built-in slow query analysis
¢ Audit reporting: Comprehensive permission change tracking

¢ Migration utilities: Tools for importing from other systems

7.4 Scalability Features
e Partitioning strategies: For very large installations
¢ Caching layer: Redis integration examples

¢ Read replicas: Permission checking on replicas

8. Risk Assessment

Low Risk Areas:
e Stability: Well-tested core functionality
e Compatibility: PostgreSQL 14+ widely available

¢ Migration: Clear upgrade paths provided

Medium Risk Areas:

¢ Vendor lock-in: PostgreSQL-specific solution
o Complexity: Requires understanding of RLS

¢ Performance: May need tuning for very large scales

Mitigation Strategies:
¢ Thorough testing before production deployment
¢ Performance benchmarking with realistic data volumes

e Training for development team on RLS concepts

9. Implementation Recommendations

For New Projects:
1. Strongly Recommended - Start with ¢77_rbac from the beginning
2. Design your schema with RLS in mind
3. Use the tutorial to train your team

4. Implement monitoring from day one

For Existing Projects:
1. Evaluate current authorization pain points
2. Pilot with non-critical tables first
3. Migrate incrementally by feature area

4. Monitor performance impact carefully

Best Practices:
e Use bulk operations for initial user setup
e Implement regular permission audits
e Cache permission checks in application layer when appropriate

e Monitor slow queries and optimize as needed

10. Conclusion

The c77_rbac PostgreSQL extension represents best-in-class implementation of database-level
authorization. It combines solid technical architecture with exceptional documentation and real-world
focus. The project demonstrates professional software engineering practices rarely seen in open-source

projects.

Strengths Summary:

Production-ready with enterprise features

Exceptionally well-documented

Performance-optimized for real-world use

Security-first design philosophy

Active development (v1.0 to v1.1improvements)

Recommendation:

Highly recommended for any PostgreSQL-based application requiring robust authorization. The

investment in implementation will pay dividends in security, maintainability, and performance.

Final Assessment:

This is a mature, well-designed solution that solves real authorization challenges elegantly. With minor
enhancements in testing and advanced features, it could become the standard for PostgreSQL

authorization.

Appendix A: Quick Reference

Key Functions:

. (c77_rbac_assign_subj ect()] - Assign role to user

. [c77_rbac_bu1k_assign_subj ects()] - Bulk role assignment

. (c77_rbac_g rant feature()] - Grant permission to role

. [c77_rbac_app1y_policy()] - Apply RLS to table

. [c77_rbac_can_access ()j - Check permission

Key Tables:

. (c77_rbac_subjects] - Users

e (c77_rbac_roles)- Role definitions

e (c77_rbac_features)- Permissions

o [c77_rbac_subject_roles] - User-role mappings

o [c77_rbac_role_featu res] - Role-permission mappings

Monitoring Views:

o (c77_rbac_use r _pe rmissionsj - Complete permission matrix

. [c77_rbac_s umma ry] - System statistics

Appendix B: Resources

Documentation:

Installation Guide (INSTALL.md)

6-Part Tutorial Series (TUTORIAL-P1 through P6)

5-Part Usage Guide (USAGE-P1 through P5)

API| Reference (README.md)

Version Information:
e Current Version: 1.1
e PostgreSQL Requirement: 14+

e License: MIT

This assessment was conducted through comprehensive review of source code, documentation, and
architectural design. The findings represent an independent technical evaluation for organizations

considering adoption of the c77_rbac extension.

