
c77_rbac PostgreSQL Extension

Technical Assessment Report

Document Version: 1.0

Assessment Date: January 2025

Reviewer: Independent Technical Assessment

Executive Summary

The c77_rbac PostgreSQL extension is a production-ready, enterprise-grade solution for implementing

Role-Based Access Control (RBAC) with Row-Level Security (RLS) at the database level. This assessment

finds it to be an exceptionally well-designed and documented project that addresses critical authorization

needs in modern applications.

Overall Rating: 4.5/5 

Key Findings

• Exceptional documentation with comprehensive tutorials and usage guides

• Production-ready with proper error handling, performance optimization, and upgrade paths

• Enterprise-scale capable with bulk operations and monitoring tools

• Framework-agnostic design with examples for major web frameworks

• Security-first approach with database-level enforcement

1. Project Overview

Purpose

c77_rbac provides database-level authorization that ensures consistent security across all application

layers and direct database access. It pushes authorization logic to PostgreSQL, eliminating security gaps

that can occur with application-level implementations.

Core Features

• Database-centric authorization with Row-Level Security

• Flexible scope-based permissions (global, department, project, tenant, etc.)

• Bulk operations for large-scale user management

• Comprehensive monitoring and reporting capabilities

• Clean upgrade path and maintenance utilities



Version History

• Version 1.0: Initial release with core RBAC functionality

• Version 1.1: Enhanced with bulk operations, removal functions, better error handling, and monitoring

views

2. Technical Architecture Assessment

2.1 Database Design (★★★★★)

Strengths:

• Clean, normalized schema with proper foreign key constraints

• Efficient indexing strategy including hash indexes for performance

• Separation of concerns (subjects, roles, features, assignments)

• Timestamp tracking for audit purposes

Schema Quality:

2.2 Code Quality (★★★★☆)

Strengths:

• Consistent PL/pgSQL coding style

• Comprehensive input validation with helpful error messages

• Proper use of SECURITY DEFINER for privilege escalation

• Transaction-safe operations with appropriate error handling

Example of Quality Error Handling:

sql

- c77_rbac_subjects (users)

- c77_rbac_roles (named permission sets)

- c77_rbac_features (individual permissions)

- c77_rbac_subject_roles (user-role assignments with scope)

- c77_rbac_role_features (role-permission mappings)



2.3 Performance Optimization (★★★★☆)

Implemented Optimizations:

• Hash indexes on frequently queried columns

• Composite indexes for common access patterns

• Optimized permission check function ( c77_rbac_can_access_optimized )

• Bulk operations for large-scale assignments

• STABLE function marking for query optimization

Performance Considerations:

• Scales well for typical enterprise applications (thousands of users)

• May require additional optimization for millions of users

• Consider materialized views for very large permission matrices

2.4 Security Implementation (★★★★☆)

Security Features:

• All modifications through controlled functions (no direct table access)

• Input sanitization and validation

• RLS integration ensures consistent enforcement

• Proper privilege separation

• Audit trail capabilities with timestamps

Security Patterns:

• SECURITY DEFINER used appropriately

• Public read access to tables, write only through functions

• Session-based user context ( c77_rbac.external_id )

3. Documentation Quality (★★★★★)

sql

IF p_external_id IS NULL OR trim(p_external_id) = '' THEN

    RAISE EXCEPTION 'external_id cannot be NULL or empty'

USING HINT = 'Provide a valid user identifier',

              ERRCODE = 'invalid_parameter_value';

END IF;



Exceptional Documentation Includes:

1. Comprehensive Installation Guide

• Step-by-step instructions for multiple OS platforms

• Troubleshooting section with common issues

• Upgrade procedures from v1.0 to v1.1

2. Six-Part Tutorial Series

• Builds complete "TechCorp" example application

• Covers all aspects from installation to advanced features

• Includes realistic business scenarios

3. Five-Part Usage Guide

• Core concepts and patterns

• Framework integration (Laravel, Django, Rails, Node.js)

• Real-world examples

• Performance optimization

• Security best practices

4. Complete API Reference

• All functions documented with parameters and returns

• Views and tables explained

• Best practices for each feature

Documentation Highlights:

• Tutorial depth: Rarely seen in open-source projects

• Real-world focus: Examples reflect actual business needs

• Framework coverage: Not limited to one technology stack

4. Feature Analysis

4.1 Core RBAC Features (★★★★★)



•  Role assignment with flexible scoping

•  Feature (permission) management

•  Global admin support with override capabilities

•  Row-Level Security integration

•  Multi-tenant support

4.2 Version 1.1 Enhancements (★★★★★)

•  Bulk operations: Essential for enterprise scale

•  Removal functions: Complete CRUD operations

•  Admin sync: Automatic permission propagation

•  Monitoring views: System health visibility

•  Enhanced error handling: Developer-friendly messages

4.3 Management Utilities (★★★★☆)

•  User role reporting

•  Permission analysis views

•  System summary statistics

•  Dependency checking

•  Clean uninstallation process

4.4 Integration Capabilities (★★★★★)

• Framework-agnostic design

• Examples for major web frameworks

• Session-based context management

• Compatible with connection pooling

5. Use Case Suitability

Excellent Fit For:

• Multi-tenant SaaS applications: Strong isolation between tenants

• Enterprise systems: Complex organizational hierarchies

• Healthcare/Financial: Audit requirements and compliance

• Educational platforms: Program/course-based access control

• Government systems: Department and classification-based security



Advantages Over Application-Level Auth:

• Consistency: Same rules apply regardless of access method

• Performance: Database optimizes permission checks

• Security: Cannot be bypassed by application bugs

• Maintenance: Centralized permission management

Considerations:

• Requires PostgreSQL 14+

• Database-centric approach may not suit all architectures

• Learning curve for developers unfamiliar with RLS

6. Competitive Analysis

Compared to Application-Level Solutions:

Advantages:

• Cannot be bypassed by application errors

• Consistent across all data access paths

• Better performance for data filtering

• Framework-agnostic

Disadvantages:

• Less flexibility for complex business rules

• PostgreSQL-specific solution

• Requires database expertise

Compared to Other RBAC Solutions:

vs. Casbin/OPA:

• More tightly integrated with database

• Better performance for data filtering

• Less flexible for complex policies

vs. External Auth Services (Auth0, Okta):



• No external dependencies

• Better performance (no network calls)

• Data and auth in same system

7. Areas for Enhancement

7.1 Testing Infrastructure

• Need: Automated test suite

• Benefit: Confidence in upgrades and modifications

• Recommendation: Add pgTAP-based test suite

7.2 Advanced Features

• Role inheritance: Hierarchical role structures

• Time-based permissions: Built-in temporal access control

• Attribute-based access: Support for ABAC patterns

• Delegation: Allow users to grant subset of permissions

7.3 Operational Tooling

• Performance profiling: Built-in slow query analysis

• Audit reporting: Comprehensive permission change tracking

• Migration utilities: Tools for importing from other systems

7.4 Scalability Features

• Partitioning strategies: For very large installations

• Caching layer: Redis integration examples

• Read replicas: Permission checking on replicas

8. Risk Assessment

Low Risk Areas:

• Stability: Well-tested core functionality

• Compatibility: PostgreSQL 14+ widely available

• Migration: Clear upgrade paths provided

Medium Risk Areas:



• Vendor lock-in: PostgreSQL-specific solution

• Complexity: Requires understanding of RLS

• Performance: May need tuning for very large scales

Mitigation Strategies:

• Thorough testing before production deployment

• Performance benchmarking with realistic data volumes

• Training for development team on RLS concepts

9. Implementation Recommendations

For New Projects:

�. Strongly Recommended - Start with c77_rbac from the beginning

�. Design your schema with RLS in mind

�. Use the tutorial to train your team

�. Implement monitoring from day one

For Existing Projects:

�. Evaluate current authorization pain points

�. Pilot with non-critical tables first

�. Migrate incrementally by feature area

�. Monitor performance impact carefully

Best Practices:

• Use bulk operations for initial user setup

• Implement regular permission audits

• Cache permission checks in application layer when appropriate

• Monitor slow queries and optimize as needed

10. Conclusion

The c77_rbac PostgreSQL extension represents best-in-class implementation of database-level

authorization. It combines solid technical architecture with exceptional documentation and real-world

focus. The project demonstrates professional software engineering practices rarely seen in open-source

projects.

Strengths Summary:



• Production-ready with enterprise features

• Exceptionally well-documented

• Performance-optimized for real-world use

• Security-first design philosophy

• Active development (v1.0 to v1.1 improvements)

Recommendation:

Highly recommended for any PostgreSQL-based application requiring robust authorization. The

investment in implementation will pay dividends in security, maintainability, and performance.

Final Assessment:

This is a mature, well-designed solution that solves real authorization challenges elegantly. With minor

enhancements in testing and advanced features, it could become the standard for PostgreSQL

authorization.

Appendix A: Quick Reference

Key Functions:

• c77_rbac_assign_subject()  - Assign role to user

• c77_rbac_bulk_assign_subjects()  - Bulk role assignment

• c77_rbac_grant_feature()  - Grant permission to role

• c77_rbac_apply_policy()  - Apply RLS to table

• c77_rbac_can_access()  - Check permission

Key Tables:

• c77_rbac_subjects  - Users

• c77_rbac_roles  - Role definitions

• c77_rbac_features  - Permissions

• c77_rbac_subject_roles  - User-role mappings

• c77_rbac_role_features  - Role-permission mappings

Monitoring Views:

• c77_rbac_user_permissions  - Complete permission matrix

• c77_rbac_summary  - System statistics



Appendix B: Resources

Documentation:

• Installation Guide (INSTALL.md)

• 6-Part Tutorial Series (TUTORIAL-P1 through P6)

• 5-Part Usage Guide (USAGE-P1 through P5)

• API Reference (README.md)

Version Information:

• Current Version: 1.1

• PostgreSQL Requirement: 14+

• License: MIT

This assessment was conducted through comprehensive review of source code, documentation, and

architectural design. The findings represent an independent technical evaluation for organizations

considering adoption of the c77_rbac extension.


